Programming Massively Parallel Processors A Hands On Approach

Welcome,you are looking at books for reading, the Programming Massively Parallel Processors A Hands On Approach, you will able to read or download in Pdf or ePub books and notice some of author may have lock the live reading for some of country. Therefore it need a FREE signup process to obtain the book. If it available for your country it will shown as book reader and user fully subscribe will benefit by having full access to all books. Click and join the free full access now.

Programming Massively Parallel Processors

Programming Massively Parallel Processors [Pdf/ePub] eBook ISBN-10: 012811987X
Author:
Publisher: Morgan Kaufmann
File Size: 371 KB
File Format: Pdf
Read Count: 2222841

GET BOOK

Programming Massively Parallel Processors by Book Resume:

Programming Massively Parallel Processors: A Hands-on Approach, Third Edition shows both student and professional alike the basic concepts of parallel programming and GPU architecture, exploring, in detail, various techniques for constructing parallel programs. Case studies demonstrate the development process, detailing computational thinking and ending with effective and efficient parallel programs. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in-depth. For this new edition, the authors have updated their coverage of CUDA, including coverage of newer libraries, such as CuDNN, moved content that has become less important to appendices, added two new chapters on parallel patterns, and updated case studies to reflect current industry practices. Teaches computational thinking and problem-solving techniques that facilitate high-performance parallel computing Utilizes CUDA version 7.5, NVIDIA's software development tool created specifically for massively parallel environments Contains new and updated case studies Includes coverage of newer libraries, such as CuDNN for Deep Learning

Programming Massively Parallel Processors

Programming Massively Parallel Processors [Pdf/ePub] eBook ISBN-10: 0123914183
Author: David B. Kirk,Wen-mei W. Hwu
Publisher: Newnes
File Size: 1668 KB
File Format: Pdf
Read Count: 6023225

GET BOOK

Programming Massively Parallel Processors by David B. Kirk,Wen-mei W. Hwu Book Resume:

Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing

Programming Massively Parallel Processors

Programming Massively Parallel Processors [Pdf/ePub] eBook ISBN-10: 9780123814739
Author: David B. Kirk,Wen-mei W. Hwu
Publisher: Elsevier
File Size: 527 KB
File Format: Pdf
Read Count: 9219288

GET BOOK

Programming Massively Parallel Processors by David B. Kirk,Wen-mei W. Hwu Book Resume:

Programming Massively Parallel Processors discusses the basic concepts of parallel programming and GPU architecture. Various techniques for constructing parallel programs are explored in detail. Case studies demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This book describes computational thinking techniques that will enable students to think about problems in ways that are amenable to high-performance parallel computing. It utilizes CUDA (Compute Unified Device Architecture), NVIDIA's software development tool created specifically for massively parallel environments. Studies learn how to achieve both high-performance and high-reliability using the CUDA programming model as well as OpenCL. This book is recommended for advanced students, software engineers, programmers, and hardware engineers. Teaches computational thinking and problem-solving techniques that facilitate high-performance parallel computing. Utilizes CUDA (Compute Unified Device Architecture), NVIDIA's software development tool created specifically for massively parallel environments. Shows you how to achieve both high-performance and high-reliability using the CUDA programming model as well as OpenCL.

Professional CUDA C Programming

Professional CUDA C Programming [Pdf/ePub] eBook ISBN-10: 1118739310
Author: John Cheng,Max Grossman,Ty McKercher
Publisher: John Wiley & Sons
File Size: 687 KB
File Format: Pdf
Read Count: 5740372

GET BOOK

Professional CUDA C Programming by John Cheng,Max Grossman,Ty McKercher Book Resume:

Break into the powerful world of parallel GPU programming with this down-to-earth, practical guide Designed for professionals across multiple industrial sectors, Professional CUDA C Programming presents CUDA -- a parallel computing platform and programming model designed to ease the development of GPU programming -- fundamentals in an easy-to-follow format, and teaches readers how to think in parallel and implement parallel algorithms on GPUs. Each chapter covers a specific topic, and includes workable examples that demonstrate the development process, allowing readers to explore both the "hard" and "soft" aspects of GPU programming. Computing architectures are experiencing a fundamental shift toward scalable parallel computing motivated by application requirements in industry and science. This book demonstrates the challenges of efficiently utilizing compute resources at peak performance, presents modern techniques for tackling these challenges, while increasing accessibility for professionals who are not necessarily parallel programming experts. The CUDA programming model and tools empower developers to write high-performance applications on a scalable, parallel computing platform: the GPU. However, CUDA itself can be difficult to learn without extensive programming experience. Recognized CUDA authorities John Cheng, Max Grossman, and Ty McKercher guide readers through essential GPU programming skills and best practices in Professional CUDA C Programming, including: CUDA Programming Model GPU Execution Model GPU Memory model Streams, Event and Concurrency Multi-GPU Programming CUDA Domain-Specific Libraries Profiling and Performance Tuning The book makes complex CUDA concepts easy to understand for anyone with knowledge of basic software development with exercises designed to be both readable and high-performance. For the professional seeking entrance to parallel computing and the high-performance computing community, Professional CUDA C Programming is an invaluable resource, with the most current information available on the market.

Parallel Computer Architecture

Parallel Computer Architecture [Pdf/ePub] eBook ISBN-10: 008057307X
Author: David Culler,Jaswinder Pal Singh,Anoop Gupta
Publisher: Elsevier
File Size: 1077 KB
File Format: Pdf
Read Count: 5448606

GET BOOK

Parallel Computer Architecture by David Culler,Jaswinder Pal Singh,Anoop Gupta Book Resume:

The most exciting development in parallel computer architecture is the convergence of traditionally disparate approaches on a common machine structure. This book explains the forces behind this convergence of shared-memory, message-passing, data parallel, and data-driven computing architectures. It then examines the design issues that are critical to all parallel architecture across the full range of modern design, covering data access, communication performance, coordination of cooperative work, and correct implementation of useful semantics. It not only describes the hardware and software techniques for addressing each of these issues but also explores how these techniques interact in the same system. Examining architecture from an application-driven perspective, it provides comprehensive discussions of parallel programming for high performance and of workload-driven evaluation, based on understanding hardware-software interactions. synthesizes a decade of research and development for practicing engineers, graduate students, and researchers in parallel computer architecture, system software, and applications development presents in-depth application case studies from computer graphics, computational science and engineering, and data mining to demonstrate sound quantitative evaluation of design trade-offs describes the process of programming for performance, including both the architecture-independent and architecture-dependent aspects, with examples and case-studies illustrates bus-based and network-based parallel systems with case studies of more than a dozen important commercial designs

An Introduction to Parallel Programming

An Introduction to Parallel Programming [Pdf/ePub] eBook ISBN-10: 012804618X
Author: Peter Pacheco,Matthew Malensek
Publisher: Morgan Kaufmann
File Size: 942 KB
File Format: Pdf
Read Count: 3803857

GET BOOK

An Introduction to Parallel Programming by Peter Pacheco,Matthew Malensek Book Resume:

An Introduction to Parallel Programming, Second Edition presents a tried-and-true tutorial approach that shows students how to develop effective parallel programs with MPI, Pthreads and OpenMP. As the first undergraduate text to directly address compiling and running parallel programs on multi-core and cluster architecture, this second edition carries forward its clear explanations for designing, debugging and evaluating the performance of distributed and shared-memory programs while adding coverage of accelerators via new content on GPU programming and heterogeneous programming. New and improved user-friendly exercises teach students how to compile, run and modify example programs. Takes a tutorial approach, starting with small programming examples and building progressively to more challenging examples Explains how to develop parallel programs using MPI, Pthreads and OpenMP programming models A robust package of online ancillaries for instructors and students includes lecture slides, solutions manual, downloadable source code, and an image bank New to this edition: New chapters on GPU programming and heterogeneous programming New examples and exercises related to parallel algorithms

CUDA by Example

CUDA by Example [Pdf/ePub] eBook ISBN-10: 0132180138
Author: Jason Sanders,Edward Kandrot
Publisher: Addison-Wesley Professional
File Size: 970 KB
File Format: Pdf
Read Count: 9264571

GET BOOK

CUDA by Example by Jason Sanders,Edward Kandrot Book Resume:

CUDA is a computing architecture designed to facilitate the development of parallel programs. In conjunction with a comprehensive software platform, the CUDA Architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demanding graphics and game applications. CUDA now brings this valuable resource to programmers working on applications in other domains, including science, engineering, and finance. No knowledge of graphics programming is required—just the ability to program in a modestly extended version of C. CUDA by Example, written by two senior members of the CUDA software platform team, shows programmers how to employ this new technology. The authors introduce each area of CUDA development through working examples. After a concise introduction to the CUDA platform and architecture, as well as a quick-start guide to CUDA C, the book details the techniques and trade-offs associated with each key CUDA feature. You’ll discover when to use each CUDA C extension and how to write CUDA software that delivers truly outstanding performance. Major topics covered include Parallel programming Thread cooperation Constant memory and events Texture memory Graphics interoperability Atomics Streams CUDA C on multiple GPUs Advanced atomics Additional CUDA resources All the CUDA software tools you’ll need are freely available for download from NVIDIA. http://developer.nvidia.com/object/cuda-by-example.html

Structured Parallel Programming

Structured Parallel Programming [Pdf/ePub] eBook ISBN-10: 0123914434
Author: Michael McCool,James Reinders,Arch Robison
Publisher: Elsevier
File Size: 1563 KB
File Format: Pdf
Read Count: 3277753

GET BOOK

Structured Parallel Programming by Michael McCool,James Reinders,Arch Robison Book Resume:

Structured Parallel Programming offers the simplest way for developers to learn patterns for high-performance parallel programming. Written by parallel computing experts and industry insiders Michael McCool, Arch Robison, and James Reinders, this book explains how to design and implement maintainable and efficient parallel algorithms using a composable, structured, scalable, and machine-independent approach to parallel computing. It presents both theory and practice, and provides detailed concrete examples using multiple programming models. The examples in this book are presented using two of the most popular and cutting edge programming models for parallel programming: Threading Building Blocks, and Cilk Plus. These architecture-independent models enable easy integration into existing applications, preserve investments in existing code, and speed the development of parallel applications. Examples from realistic contexts illustrate patterns and themes in parallel algorithm design that are widely applicable regardless of implementation technology. Software developers, computer programmers, and software architects will find this book extremely helpful. The patterns-based approach offers structure and insight that developers can apply to a variety of parallel programming models Develops a composable, structured, scalable, and machine-independent approach to parallel computing Includes detailed examples in both Cilk Plus and the latest Threading Building Blocks, which support a wide variety of computers

CUDA Programming

CUDA Programming [Pdf/ePub] eBook ISBN-10: 0124159885
Author: Shane Cook
Publisher: Newnes
File Size: 1164 KB
File Format: Pdf
Read Count: 2619613

GET BOOK

CUDA Programming by Shane Cook Book Resume:

If you need to learn CUDA but don't have experience with parallel computing, CUDA Programming: A Developer's Introduction offers a detailed guide to CUDA with a grounding in parallel fundamentals. It starts by introducing CUDA and bringing you up to speed on GPU parallelism and hardware, then delving into CUDA installation. Chapters on core concepts including threads, blocks, grids, and memory focus on both parallel and CUDA-specific issues. Later, the book demonstrates CUDA in practice for optimizing applications, adjusting to new hardware, and solving common problems. Comprehensive introduction to parallel programming with CUDA, for readers new to both Detailed instructions help readers optimize the CUDA software development kit Practical techniques illustrate working with memory, threads, algorithms, resources, and more Covers CUDA on multiple hardware platforms: Mac, Linux and Windows with several NVIDIA chipsets Each chapter includes exercises to test reader knowledge

Patterns for Parallel Programming

Patterns for Parallel Programming [Pdf/ePub] eBook ISBN-10: 9780321630032
Author: Timothy G. Mattson,Beverly Sanders,Berna Massingill
Publisher: Pearson Education
File Size: 474 KB
File Format: Pdf
Read Count: 4801087

GET BOOK

Patterns for Parallel Programming by Timothy G. Mattson,Beverly Sanders,Berna Massingill Book Resume:

The Parallel Programming Guide for Every Software Developer From grids and clusters to next-generation game consoles, parallel computing is going mainstream. Innovations such as Hyper-Threading Technology, HyperTransport Technology, and multicore microprocessors from IBM, Intel, and Sun are accelerating the movement's growth. Only one thing is missing: programmers with the skills to meet the soaring demand for parallel software. That's where Patterns for Parallel Programming comes in. It's the first parallel programming guide written specifically to serve working software developers, not just computer scientists. The authors introduce a complete, highly accessible pattern language that will help any experienced developer "think parallel"-and start writing effective parallel code almost immediately. Instead of formal theory, they deliver proven solutions to the challenges faced by parallel programmers, and pragmatic guidance for using today's parallel APIs in the real world. Coverage includes: Understanding the parallel computing landscape and the challenges faced by parallel developers Finding the concurrency in a software design problem and decomposing it into concurrent tasks Managing the use of data across tasks Creating an algorithm structure that effectively exploits the concurrency you've identified Connecting your algorithmic structures to the APIs needed to implement them Specific software constructs for implementing parallel programs Working with today's leading parallel programming environments: OpenMP, MPI, and Java Patterns have helped thousands of programmers master object-oriented development and other complex programming technologies. With this book, you will learn that they're the best way to master parallel programming too.

Hands-On GPU Programming with Python and CUDA

Hands-On GPU Programming with Python and CUDA [Pdf/ePub] eBook ISBN-10: 1788995228
Author: Dr. Brian Tuomanen
Publisher: Packt Publishing Ltd
File Size: 1163 KB
File Format: Pdf
Read Count: 7603247

GET BOOK

Hands-On GPU Programming with Python and CUDA by Dr. Brian Tuomanen Book Resume:

Build real-world applications with Python 2.7, CUDA 9, and CUDA 10. We suggest the use of Python 2.7 over Python 3.x, since Python 2.7 has stable support across all the libraries we use in this book. Key Features Expand your background in GPU programming—PyCUDA, scikit-cuda, and Nsight Effectively use CUDA libraries such as cuBLAS, cuFFT, and cuSolver Apply GPU programming to modern data science applications Book Description Hands-On GPU Programming with Python and CUDA hits the ground running: you’ll start by learning how to apply Amdahl’s Law, use a code profiler to identify bottlenecks in your Python code, and set up an appropriate GPU programming environment. You’ll then see how to “query” the GPU’s features and copy arrays of data to and from the GPU’s own memory. As you make your way through the book, you’ll launch code directly onto the GPU and write full blown GPU kernels and device functions in CUDA C. You’ll get to grips with profiling GPU code effectively and fully test and debug your code using Nsight IDE. Next, you’ll explore some of the more well-known NVIDIA libraries, such as cuFFT and cuBLAS. With a solid background in place, you will now apply your new-found knowledge to develop your very own GPU-based deep neural network from scratch. You’ll then explore advanced topics, such as warp shuffling, dynamic parallelism, and PTX assembly. In the final chapter, you’ll see some topics and applications related to GPU programming that you may wish to pursue, including AI, graphics, and blockchain. By the end of this book, you will be able to apply GPU programming to problems related to data science and high-performance computing. What you will learn Launch GPU code directly from Python Write effective and efficient GPU kernels and device functions Use libraries such as cuFFT, cuBLAS, and cuSolver Debug and profile your code with Nsight and Visual Profiler Apply GPU programming to datascience problems Build a GPU-based deep neuralnetwork from scratch Explore advanced GPU hardware features, such as warp shuffling Who this book is for Hands-On GPU Programming with Python and CUDA is for developers and data scientists who want to learn the basics of effective GPU programming to improve performance using Python code. You should have an understanding of first-year college or university-level engineering mathematics and physics, and have some experience with Python as well as in any C-based programming language such as C, C++, Go, or Java.

The CUDA Handbook

The CUDA Handbook [Pdf/ePub] eBook ISBN-10: 0133261506
Author: Nicholas Wilt
Publisher: Addison-Wesley
File Size: 1844 KB
File Format: Pdf
Read Count: 3882407

GET BOOK

The CUDA Handbook by Nicholas Wilt Book Resume:

The CUDA Handbook begins where CUDA by Example (Addison-Wesley, 2011) leaves off, discussing CUDA hardware and software in greater detail and covering both CUDA 5.0 and Kepler. Every CUDA developer, from the casual to the most sophisticated, will find something here of interest and immediate usefulness. Newer CUDA developers will see how the hardware processes commands and how the driver checks progress; more experienced CUDA developers will appreciate the expert coverage of topics such as the driver API and context migration, as well as the guidance on how best to structure CPU/GPU data interchange and synchronization. The accompanying open source code–more than 25,000 lines of it, freely available at www.cudahandbook.com–is specifically intended to be reused and repurposed by developers. Designed to be both a comprehensive reference and a practical cookbook, the text is divided into the following three parts: Part I, Overview, gives high-level descriptions of the hardware and software that make CUDA possible. Part II, Details, provides thorough descriptions of every aspect of CUDA, including Memory Streams and events Models of execution, including the dynamic parallelism feature, new with CUDA 5.0 and SM 3.5 The streaming multiprocessors, including descriptions of all features through SM 3.5 Programming multiple GPUs Texturing The source code accompanying Part II is presented as reusable microbenchmarks and microdemos, designed to expose specific hardware characteristics or highlight specific use cases. Part III, Select Applications, details specific families of CUDA applications and key parallel algorithms, including Streaming workloads Reduction Parallel prefix sum (Scan) N-body Image Processing These algorithms cover the full range of potential CUDA applications.

CUDA Application Design and Development

CUDA Application Design and Development [Pdf/ePub] eBook ISBN-10: 0123884322
Author: Rob Farber
Publisher: Elsevier
File Size: 641 KB
File Format: Pdf
Read Count: 9583831

GET BOOK

CUDA Application Design and Development by Rob Farber Book Resume:

As the computer industry retools to leverage massively parallel graphics processing units (GPUs), this book is designed to meet the needs of working software developers who need to understand GPU programming with CUDA and increase efficiency in their projects. CUDA Application Design and Development starts with an introduction to parallel computing concepts for readers with no previous parallel experience, and focuses on issues of immediate importance to working software developers: achieving high performance, maintaining competitiveness, analyzing CUDA benefits versus costs, and determining application lifespan. The book then details the thought behind CUDA and teaches how to create, analyze, and debug CUDA applications. Throughout, the focus is on software engineering issues: how to use CUDA in the context of existing application code, with existing compilers, languages, software tools, and industry-standard API libraries. Using an approach refined in a series of well-received articles at Dr Dobb's Journal, author Rob Farber takes the reader step-by-step from fundamentals to implementation, moving from language theory to practical coding. Includes multiple examples building from simple to more complex applications in four key areas: machine learning, visualization, vision recognition, and mobile computing Addresses the foundational issues for CUDA development: multi-threaded programming and the different memory hierarchy Includes teaching chapters designed to give a full understanding of CUDA tools, techniques and structure. Presents CUDA techniques in the context of the hardware they are implemented on as well as other styles of programming that will help readers bridge into the new material

Multicore and GPU Programming

Multicore and GPU Programming [Pdf/ePub] eBook ISBN-10: 0124171400
Author: Gerassimos Barlas
Publisher: Elsevier
File Size: 961 KB
File Format: Pdf
Read Count: 7630318

GET BOOK

Multicore and GPU Programming by Gerassimos Barlas Book Resume:

Multicore and GPU Programming offers broad coverage of the key parallel computing skillsets: multicore CPU programming and manycore "massively parallel" computing. Using threads, OpenMP, MPI, and CUDA, it teaches the design and development of software capable of taking advantage of today’s computing platforms incorporating CPU and GPU hardware and explains how to transition from sequential programming to a parallel computing paradigm. Presenting material refined over more than a decade of teaching parallel computing, author Gerassimos Barlas minimizes the challenge with multiple examples, extensive case studies, and full source code. Using this book, you can develop programs that run over distributed memory machines using MPI, create multi-threaded applications with either libraries or directives, write optimized applications that balance the workload between available computing resources, and profile and debug programs targeting multicore machines. Comprehensive coverage of all major multicore programming tools, including threads, OpenMP, MPI, and CUDA Demonstrates parallel programming design patterns and examples of how different tools and paradigms can be integrated for superior performance Particular focus on the emerging area of divisible load theory and its impact on load balancing and distributed systems Download source code, examples, and instructor support materials on the book's companion website

Heterogeneous Computing with OpenCL 2.0

Heterogeneous Computing with OpenCL 2.0 [Pdf/ePub] eBook ISBN-10: 0128016493
Author: David R. Kaeli,Perhaad Mistry,Dana Schaa,Dong Ping Zhang
Publisher: Morgan Kaufmann
File Size: 457 KB
File Format: Pdf
Read Count: 4203426

GET BOOK

Heterogeneous Computing with OpenCL 2.0 by David R. Kaeli,Perhaad Mistry,Dana Schaa,Dong Ping Zhang Book Resume:

Heterogeneous Computing with OpenCL 2.0 teaches OpenCL and parallel programming for complex systems that may include a variety of device architectures: multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units (APUs). This fully-revised edition includes the latest enhancements in OpenCL 2.0 including: • Shared virtual memory to increase programming flexibility and reduce data transfers that consume resources • Dynamic parallelism which reduces processor load and avoids bottlenecks • Improved imaging support and integration with OpenGL Designed to work on multiple platforms, OpenCL will help you more effectively program for a heterogeneous future. Written by leaders in the parallel computing and OpenCL communities, this book explores memory spaces, optimization techniques, extensions, debugging and profiling. Multiple case studies and examples illustrate high-performance algorithms, distributing work across heterogeneous systems, embedded domain-specific languages, and will give you hands-on OpenCL experience to address a range of fundamental parallel algorithms. Updated content to cover the latest developments in OpenCL 2.0, including improvements in memory handling, parallelism, and imaging support Explanations of principles and strategies to learn parallel programming with OpenCL, from understanding the abstraction models to thoroughly testing and debugging complete applications Example code covering image analytics, web plugins, particle simulations, video editing, performance optimization, and more

Parallel Programming

Parallel Programming [Pdf/ePub] eBook ISBN-10: 0128044861
Author: Bertil Schmidt,Jorge Gonzalez-Dominguez,Christian Hundt,Moritz Schlarb
Publisher: Morgan Kaufmann
File Size: 302 KB
File Format: Pdf
Read Count: 5611837

GET BOOK

Parallel Programming by Bertil Schmidt,Jorge Gonzalez-Dominguez,Christian Hundt,Moritz Schlarb Book Resume:

Parallel Programming: Concepts and Practice provides an upper level introduction to parallel programming. In addition to covering general parallelism concepts, this text teaches practical programming skills for both shared memory and distributed memory architectures. The authors’ open-source system for automated code evaluation provides easy access to parallel computing resources, making the book particularly suitable for classroom settings. Covers parallel programming approaches for single computer nodes and HPC clusters: OpenMP, multithreading, SIMD vectorization, MPI, UPC++ Contains numerous practical parallel programming exercises Includes access to an automated code evaluation tool that enables students the opportunity to program in a web browser and receive immediate feedback on the result validity of their program Features an example-based teaching of concept to enhance learning outcomes

Hands-On GPU-Accelerated Computer Vision with OpenCV and CUDA

Hands-On GPU-Accelerated Computer Vision with OpenCV and CUDA [Pdf/ePub] eBook ISBN-10: 1789343682
Author: Bhaumik Vaidya
Publisher: Packt Publishing Ltd
File Size: 336 KB
File Format: Pdf
Read Count: 6409342

GET BOOK

Hands-On GPU-Accelerated Computer Vision with OpenCV and CUDA by Bhaumik Vaidya Book Resume:

Discover how CUDA allows OpenCV to handle complex and rapidly growing image data processing in computer and machine vision by accessing the power of GPU Key Features Explore examples to leverage the GPU processing power with OpenCV and CUDA Enhance the performance of algorithms on embedded hardware platforms Discover C++ and Python libraries for GPU acceleration Book Description Computer vision has been revolutionizing a wide range of industries, and OpenCV is the most widely chosen tool for computer vision with its ability to work in multiple programming languages. Nowadays, in computer vision, there is a need to process large images in real time, which is difficult to handle for OpenCV on its own. This is where CUDA comes into the picture, allowing OpenCV to leverage powerful NVDIA GPUs. This book provides a detailed overview of integrating OpenCV with CUDA for practical applications. To start with, you’ll understand GPU programming with CUDA, an essential aspect for computer vision developers who have never worked with GPUs. You’ll then move on to exploring OpenCV acceleration with GPUs and CUDA by walking through some practical examples. Once you have got to grips with the core concepts, you’ll familiarize yourself with deploying OpenCV applications on NVIDIA Jetson TX1, which is popular for computer vision and deep learning applications. The last chapters of the book explain PyCUDA, a Python library that leverages the power of CUDA and GPUs for accelerations and can be used by computer vision developers who use OpenCV with Python. By the end of this book, you’ll have enhanced computer vision applications with the help of this book's hands-on approach. What you will learn Understand how to access GPU device properties and capabilities from CUDA programs Learn how to accelerate searching and sorting algorithms Detect shapes such as lines and circles in images Explore object tracking and detection with algorithms Process videos using different video analysis techniques in Jetson TX1 Access GPU device properties from the PyCUDA program Understand how kernel execution works Who this book is for This book is a go-to guide for you if you are a developer working with OpenCV and want to learn how to process more complex image data by exploiting GPU processing. A thorough understanding of computer vision concepts and programming languages such as C++ or Python is expected.

Parallel Programming

Parallel Programming [Pdf/ePub] eBook ISBN-10: 3642378013
Author: Thomas Rauber,Gudula Rünger
Publisher: Springer Science & Business Media
File Size: 344 KB
File Format: Pdf
Read Count: 2694850

GET BOOK

Parallel Programming by Thomas Rauber,Gudula Rünger Book Resume:

Innovations in hardware architecture, like hyper-threading or multicore processors, mean that parallel computing resources are available for inexpensive desktop computers. In only a few years, many standard software products will be based on concepts of parallel programming implemented on such hardware, and the range of applications will be much broader than that of scientific computing, up to now the main application area for parallel computing. Rauber and Rünger take up these recent developments in processor architecture by giving detailed descriptions of parallel programming techniques that are necessary for developing efficient programs for multicore processors as well as for parallel cluster systems and supercomputers. Their book is structured in three main parts, covering all areas of parallel computing: the architecture of parallel systems, parallel programming models and environments, and the implementation of efficient application algorithms. The emphasis lies on parallel programming techniques needed for different architectures. For this second edition, all chapters have been carefully revised. The chapter on architecture of parallel systems has been updated considerably, with a greater emphasis on the architecture of multicore systems and adding new material on the latest developments in computer architecture. Lastly, a completely new chapter on general-purpose GPUs and the corresponding programming techniques has been added. The main goal of the book is to present parallel programming techniques that can be used in many situations for a broad range of application areas and which enable the reader to develop correct and efficient parallel programs. Many examples and exercises are provided to show how to apply the techniques. The book can be used as both a textbook for students and a reference book for professionals. The material presented has been used for courses in parallel programming at different universities for many years.

Parallel Computing Works!

Parallel Computing Works! [Pdf/ePub] eBook ISBN-10: 0080513514
Author: Geoffrey C. Fox,Roy D. Williams,Guiseppe C. Messina
Publisher: Elsevier
File Size: 1155 KB
File Format: Pdf
Read Count: 7412742

GET BOOK

Parallel Computing Works! by Geoffrey C. Fox,Roy D. Williams,Guiseppe C. Messina Book Resume:

A clear illustration of how parallel computers can be successfully applied to large-scale scientific computations. This book demonstrates how a variety of applications in physics, biology, mathematics and other sciences were implemented on real parallel computers to produce new scientific results. It investigates issues of fine-grained parallelism relevant for future supercomputers with particular emphasis on hypercube architecture. The authors describe how they used an experimental approach to configure different massively parallel machines, design and implement basic system software, and develop algorithms for frequently used mathematical computations. They also devise performance models, measure the performance characteristics of several computers, and create a high-performance computing facility based exclusively on parallel computers. By addressing all issues involved in scientific problem solving, Parallel Computing Works! provides valuable insight into computational science for large-scale parallel architectures. For those in the sciences, the findings reveal the usefulness of an important experimental tool. Anyone in supercomputing and related computational fields will gain a new perspective on the potential contributions of parallelism. Includes over 30 full-color illustrations.

Introduction to Parallel Computing

Introduction to Parallel Computing [Pdf/ePub] eBook ISBN-10: 3319988336
Author: Roman Trobec,Boštjan Slivnik,Patricio Bulić,Borut Robič
Publisher: Springer
File Size: 932 KB
File Format: Pdf
Read Count: 2524100

GET BOOK

Introduction to Parallel Computing by Roman Trobec,Boštjan Slivnik,Patricio Bulić,Borut Robič Book Resume:

Advancements in microprocessor architecture, interconnection technology, and software development have fueled rapid growth in parallel and distributed computing. However, this development is only of practical benefit if it is accompanied by progress in the design, analysis and programming of parallel algorithms. This concise textbook provides, in one place, three mainstream parallelization approaches, Open MPP, MPI and OpenCL, for multicore computers, interconnected computers and graphical processing units. An overview of practical parallel computing and principles will enable the reader to design efficient parallel programs for solving various computational problems on state-of-the-art personal computers and computing clusters. Topics covered range from parallel algorithms, programming tools, OpenMP, MPI and OpenCL, followed by experimental measurements of parallel programs’ run-times, and by engineering analysis of obtained results for improved parallel execution performances. Many examples and exercises support the exposition.